skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van_de_Flierdt, Tina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marine δ18O data reveal astronomical forcing of the climate and cryosphere during the Miocene, when atmosphericPco2was on par with emissions scenarios over the next century. This inspired hypotheses for how Milankovitch cycles, ice-ocean interactions, and greenhouse gases influence ice volume. Mass balance controls for marine and terrestrial ice sheets differ, and proxy data collected far from Antarctica provide valuable but limited insight into regional processes. We evaluate clast abundance data from Antarctic marine sedimentary records, observing a strong signal of eccentricity and precession coincident with a terrestrial ice sheet and a clear obliquity signal at the margins of a marine ice sheet. These analyses are integrated with a synthesis of proxy data, and we argue that high variance in obliquity forcing (mediated and enhanced by the ocean and atmosphere) can inhibit ice sheet growth, even when insolation forcing is conducive to glaciation. This “obliquity disruption” explains cryosphere variability before the existence of large northern hemisphere ice sheets. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. Abstract Beneath Antarctica’s ice sheets, a little-observed network of liquid water connects vast landscapes and contributes to the motion of the overriding ice. When this subglacial water reaches the ocean cavity beneath ice shelves, it mixes with seawater, amplifying melt and in places forming deep channels in the base of the ice. Here we present observations from a hot-water-drilled borehole documenting subglacial water entering the ocean cavity at the grounding zone of Kamb Ice Stream and the Ross Ice Shelf. Our observations show that melt has removed approximately a third of the ice thickness, yet measurements reveal low rates of subglacial discharge in a turbid plume. Sediment cored from the channel floor shows larger discharge events occur and episodically deposit material from distinct geological domains. We quantify subglacial discharge and link our observations to the catchment upstream. We conclude that discrete discharge events are likely to dominate channel melt and sediment transport and result in the extensive ice-shelf features downstream of Kamb Ice Stream. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Large-scale geological structures have controlled the long-term development of the bed and thus the flow of the West Antarctic Ice Sheet (WAIS). However, complete ice cover has obscured the age and exact positions of faults and geological boundaries beneath Thwaites Glacier and Pine Island Glacier, two major WAIS outlets in the Amundsen Sea sector. Here, we characterize the only rock outcrop between these two glaciers, which was exposed by the retreat of slow-flowing coastal ice in the early 2010s to form the new Sif Island. The island comprises granite, zircon U-Pb dated to ~177–174 Ma and characterized by initial ɛNd,87Sr/86Sr and ɛHfisotope compositions of -2.3, 0.7061 and -1.3, respectively. These characteristics resemble Thurston Island/Antarctic Peninsula crustal block rocks, strongly suggesting that the Sif Island granite belongs to this province and placing the crustal block's boundary with the Marie Byrd Land province under Thwaites Glacier or its eastern shear margin. Low-temperature thermochronological data reveal that the granite underwent rapid cooling following emplacement, rapidly cooled again at ~100–90 Ma and then remained close to the Earth's surface until present. These data help date vertical displacement across the major tectonic structure beneath Pine Island Glacier to the Late Cretaceous. 
    more » « less
  4. Abstract Drill cores from the Antarctic continental shelf are essential for directly constraining changes in past Antarctic Ice Sheet extent. Here, we provide a sedimentary facies analysis of drill cores from International Ocean Discovery Program (IODP) Site U1521 in the Ross Sea, which reveals a unique, detailed snapshot of Antarctic Ice Sheet evolution between ca. 18 Ma and 13 Ma. We identify distinct depositional packages, each of which contains facies successions that are reflective of past baseline shifts in the presence or absence of marine-terminating ice sheets on the outermost Ross Sea continental shelf. The oldest depositional package (>18 Ma) contains massive diamictites stacked through aggradation and deposited in a deep, actively subsiding basin that restricted marine ice sheet expansion on the outer continental shelf. A slowdown in tectonic subsidence after 17.8 Ma led to the deposition of progradational massive diamictites with thin mudstone beds/laminae, as several large marine-based ice sheet advances expanded onto the mid- to outer continental shelf between 17.8 Ma and 17.4 Ma. Between 17.2 Ma and 15.95 Ma, packages of interbedded diamictite and diatom-rich mudstone were deposited during a phase of highly variable Antarctic Ice Sheet extent and volume. This included periods of Antarctic Ice Sheet advance near the outer shelf during the early Miocene Climate Optimum (MCO)—despite this being a well-known period of peak global warmth between ca. 17.0 Ma and 14.6 Ma. Conversely, there were periods of peak warmth within the MCO during which diatom-rich mudstones with little to no ice-rafted debris were deposited, which indicates that the Antarctic Ice Sheet was greatly reduced in extent and had retreated to a smaller terrestrial-terminating ice sheet, most notably between 16.3 Ma and 15.95 Ma. Post-14.2 Ma, diamictites and diatomites contain unambiguous evidence of subglacial shearing in the core and provide the first direct, well-dated evidence of highly erosive marine ice sheets on the outermost continental shelf during the onset of the Middle Miocene Climate Transition (MMCT; 14.2–13.6 Ma). Although global climate forcings and feedbacks influenced Antarctic Ice Sheet advances and retreats during the MCO and MMCT, we propose that this response was nonlinear and heavily influenced by regional feedbacks related to the shoaling of the continental shelf due to reduced subsidence, sediment infilling, and local sea-level changes that directly influenced oceanic influences on melting at the Antarctic Ice Sheet margin. Although intervals of diatom-rich muds and diatomite indicating open-marine interglacial conditions still occurred during (and following) the MMCT, repeated advances of marine-based ice sheets since that time have resulted in widespread erosion and overdeepening in the inner Ross Sea, which has greatly enhanced sensitivity to marine ice sheet instability since 14.2 Ma. 
    more » « less
  5. The Wilkes and Aurora basins are large, low‐lying sub‐glacial basins that may cause areas of weakness in the overlying East Antarctic ice sheet. Previous work based on ice‐rafted debris (IRD) provenance analyses found evidence for massive iceberg discharges from these areas during the late Miocene and Pliocene. Here we characterize the sediments shed from the inferred areas of weakness along this margin (94°E to 165°E) by measuring40Ar/39Ar ages of 292 individual detrital hornblende grains from eight marine sediment core locations off East Antarctica and Nd isotopic compositions of the bulk fine fraction from the same sediments. We further expand the toolbox for Antarctic IRD provenance analyses by exploring the application of40Ar/39Ar ages of detrital biotites; biotite as an IRD tracer eliminates lithological biases imposed by only analyzing hornblendes and allows for characterization of samples with low IRD concentrations. Our data quadruples the number of detrital40Ar/39Ar ages from this margin of East Antarctica and leads to the following conclusions: (1) Four main sectors between the Ross Sea and Prydz Bay, separated by ice drainage divides, are distinguishable based upon the combination of40Ar/39Ar ages of detrital hornblende and biotite grains and theεNdof the bulk fine fraction; (2)40Ar/39Ar biotite ages can be used as a robust provenance tracer for this part of East Antarctica; and (3) sediments shed from the coastal areas of the Aurora and Wilkes sub‐glacial basins can be clearly distinguished from one another based upon their isotopic fingerprints. 
    more » « less